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Résumé. Les méthodes d’ensembles sont très populaires et performantes sur des prob-
lématiques de classification ou de prédiction. Elles sont basées sur l’agrégation de plusieurs
classifieurs, qui sont des arbres de régression ou de classification. On considère une pondération
de leurs prédictions pour prédire une valeur ou une classe d’une nouvelle instance de donnée.
Concrètement, un arbre est un estimateur constant par morceaux sur des partitions disjointes
de l’espace des variables d’entrées. Ces partitions sont construites par des divisions dyadiques
récursives de l’ensemble des variables d’entrées qui minimisent une fonction de risque. En
pratique, les observations d’une base de données sont sous-jacentes à des mesures qui peuvent
présenter une incertitude. Ce travail propose d’étendre la construction d’un arbre de régression
tel que CART à ce type de données. Nous introduisons d’abord la modélisation induite et
adaptée à des données incertaines, puis nous présentons des règles de partitionnement et de
prédiction pour la construction d’arbres prenant en compte l’incertitude de chaque observation
quantitative d’une base de données.

Mots-clés. Apprentissage machine, Méthodes d’ensemble, Arbres de régression, Mesures
incertaines, Variables hétérogènes.

Abstract. The ensemble methods are popular machine learning techniques which are pow-
erful when one wants to deal with both classification or prediction problems. A set of classifiers
(regression or classification trees) is constructed, and the classification or the prediction of a
new data instance is done by tacking a weighted vote. A tree is a piece-wise constant estimator
on partitions obtained from the data. These partitions are induced by recursive dyadic split
of the set of input variables. For example, CART (Classification And Regression Trees) [1] is
an efficient algorithm for the construction of a tree. The goal is to partition the space of input
variable values in the most as possible "homogeneous" K disjoint regions. More precisely, each
partitioning value has to minimize a risk function. However, in practice, experimental measures
can be observed with uncertainty. This work proposes to extend CART algorithm to this kind
of data. We present an induced model adapted to uncertainty data and both a prediction
and split rule for a tree construction taking into account the uncertainty of each quantitative
observation from the data base.

Keywords. Machine learning, Ensemble methods, Regression trees, Uncertainty measures,
Heterogeneous variables.
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1 Introduction
When each quantitative observation of a dataset or a part of them has been measured with
an uncertainty described by a known probability distribution and a known variance parameter
value (but unknown mean parameter), the induced learning set is more informative than a
classical learning set used by ensemble methods. To deal with this supplementary information,
this work proposes to extend the ensemble methods to this kind of learning set. According
to the literature [2, 3, 4], several algorithms for the construction of a tree are available, but
they are all based on the minimization of a risk function and can be summarized into two
tasks: a split rule and a prediction rule. For that purpose, each data instance is supposed
to belong to a subset of the input variables space. However, in our context of uncertainty,
each data instance is associated with a latent instance data. Thus, the construction process
of a tree has to take into account the probability that the underlying latent instance belongs
to each other disjoint regions. This is made by the knowledge available in the learning set,
meaning, probability distributions and their variance parameter values. The induced model
and notations are introduced in Section 2. To illustrate the contribution of this work, Section
3 presents the risk function, the prediction rule and the split rule for the CART algorithm and
then, a new tree formula, which takes into account the uncertainty, is proposed in Section 4.
The risk function formula modified is presented, and the induced split and prediction rules are
demonstrated. To conclude, we present a discussion on a set of perspectives of this work in
Section 5.

2 Model and notations
Let (X, Y ) be a concatenation of variables taking values in X × R, where X = (X1, · · · , Xp),
X = Rp is the input space2, and R is the output space. We assume we have access to a set
(xi, yi)1≤i≤n of size n of independent past cases of (X, Y ) taken from a universe Ω and a set of
probability distributions with their respective variance parameter values. The learning set Ln
is then defined by

Ln =
{(

(x1i , · · · , x
p
i , yi)1≤i≤n, (Pj, σj)1≤j≤p,PY , σY

)}
(1)

where Pj is the probability distribution associated to the input variable Xj for j ∈ {1, · · · , p}
and σ2

j is its associated variance (the corresponding mean is unknown), and similarly PY is the
probability distribution associated to the output variable Yi and σ2

Y is its associated variance
(and the corresponding mean is unknown).

2In order to avoid heavy formulas, we present the reduced case X = Rp in the sequel, but, with no loss of
generality, we can extend this work to X = Rp−q ×Qq where Q is a finite set of values. Thus, categorical input
variables can be managed by this approach. Then, we can also extend this case to some quantitative input
observations without uncertainty. For this purpose, one just has to manage these input both categorical and
without uncertainty observations classically such as in CART.
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Each observation is independent and identically distributed from the other. Then, proba-
bility distributions defined by (Pj)1≤j≤p, PY and (σ2

j )1≤j≤p, σ2
Y do not depend on the index i of

the observations and are fixed through the learning set Ln.
In the uncertainty measure case, we assume that, for every i ∈ {1, · · · , n}, each observed

value xji is coming from a random variable Xj, for j ∈ {1, · · · , p}, which corresponds to a
latent variable U j with a measurement error εj: formally, each observation (input and output)
is defined such as, for 1 ≤ j ≤ p, 

Y = f(X) + ε,
Xj = U j + εj

Y = UY + εY ,
(2)

where εj ∼ Pj
σ2
j
, εYi ∼ PY

σ2
Y
, ε given X is a zero mean measurement error with a variance

parameter σ2 and f is the unknown regression function. The joint probability distribution of
(X, Y ) is unknown, then our goal is to learn the function f : X 7→ R from Ln. This supervised
learning task can be realized by the construction of a regression tree T , providing an estimator
f̂ and then a prediction ŷ = f̂(x) for a new observation x. The estimator f̂ is constructed by
minimizing the empirical quadratic risk:

Fn(f, f̂ ,Lm) =
1

n

K∑
k=1

∑
{1≤i≤m:(xi,yi)∈Rk}

(yi − f̂(xi))
2. (3)

In this work, we propose to extend the popular CART construction (restricted to the regres-
sion case) to the uncertainty measures case. To tackle this issue, we take into account the
supplementary knowledge given by ((Pj, σj)1≤j≤p) in the learning set. The knowledge given by
(PY , σY ) is not taken into account in this project, but is part of our perspectives.

3 Regression decision tree: classical case
In this section, the main steps to construct a regression decision tree without uncertainty
measures are described. The learning set in this case is defined by L∗n =

{
(x1i , · · · , x

p
i , yi)1≤i≤n

}
.

Binary tree is considered. The set X is associated to the root. Then, a node t represents a
subset of input observations, which belong to a certain region, the corresponding learning set is
denoted by L∗n|t and similarly the corresponding estimator is denoted f̂|t. The construction of
the tree is done by induction: we subdivide every node t (or the corresponding region) into two
nodes tL and tR (or two subregions) with respect to a split which needs to be defined. In the
end, we get a partition of the input space X intoK regions (Rk)1≤k≤K , and then, for 1 ≤ k ≤ K,
a prediction γk is assigned to each region Rk. In this work, the regions (Rk)1≤k≤K are generated
by splits (hyper-planes from X ) with split zones (boundaries of Rk) parallel to the axes formed
by the input variables: we focus on hyperrectangles. Thus, a tree is defined by its parameters
Θ = {(Rk, γk)1≤k≤K}, and we estimate the function f by f̂(x) = T (x; Θ) :=

∑K
k=1 γk1{x∈Rk}.
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Parameters are estimated by minimizing the quadratic risk (3). It consists of a minimization
problem over two multivariate variables, and we decompose this optimization problem into two
steps: the split rule and the predictive rule described in the next subsections. Those steps
are iterated until a stopping rule (to be defined). It leads to construct a maximal tree, which
should be pruned.

3.1 Predictive rule

For 1 ≤ k ≤ K, a constant γk has to be assigned to each region Rk such that the predictive
rule for a new observation x becomes: x ∈ Rk ⇒ f̂(x) = γk. Each constant is computed by
minimizing the empirical quadratic risk defined in (3): for all 1 ≤ k ≤ K,

γ̂k =argmin
γk∈R

{
Fn(f, γk1{xi∈Rk},L

∗
n)
}

=
1

| {i : xi ∈ Rk} |
∑

i:xi∈Rk

yi. (4)

3.2 Split rule

To define the regions, we have to define the variable with respect to which we are splitting,
and the splitting value. To select the best variable to split, we compute the best split for
every variable, and then, among all those splits, we define the variable which minimizes the
quadratic risk. As the construction is done by induction, we fix a node t which corresponds to
a region R, and we split it into two disjoint child nodes tL and tR corresponding to the regions
R∩ {Xj < ŝjt} and R∩ {Xj ≥ ŝjt}.

Fix the variable index 1 ≤ j ≤ p. The split ŝjt is chosen to minimize the impurity in both
tL and tR:

ŝjt = argmin
{(tL,tR):t=tL∪tR}

[
Fn(f, f̂|tL ,L∗n|tL) + Fn(f, f̂|tR ,L∗n|tR)

]
(5)

To speed up the computation, we are looking for splits in the set of observed values: we are
testing every possible values in the finite set Sj = {(xji )1≤i≤n}. Then, we select the index j
minimizing the quadratic risk, where the split has been defined beforehand.

4 Regression decision tree with uncertainty measures
In this section, uncertainty measures are taken into account through the learning set defined
in (1) to construct a tree, in order to be as close as possible to the expected tree that would
be constructed on the unknown set {((U j

i )1≤j≤p, U
Y
i )1≤i≤n}. Some intuition to understand the

differences between the construction of the two trees is first given. For an observation xi
belonging to a region Rk, the underlying latent observation of the variable Ui can be in a
different region Rk′ . Indeed, the measurement error can be large enough to modify the region-
belonging. Thus, given the value xi, the construction of the estimator f̂ has to take into
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account the probability of Ui ∈ Rk′ for each region k′ ∈ {1, · · · , K}. We are then interested
in P(Ui ∈ Rk|Xi = xi). In this work, we assume that the variables are independent, then this
probability is decomposed as follows:

Pi,k := P(Ui ∈ Rk|Xi = xi) =

p∏
j=1

P(U j
i ∈ R

j
k|X

j
i = xji ).

This probability can be computed in some specific cases, e.g. when Pj is normal and X is
normally distributed. In general, assuming a parametric family, the distribution of Xj can
be estimated from the observations; one could then obtain the distribution of U j|Xj using
Fourier transforms (an explicit formula may be obtained when the marginal and conditional
distributions are related). We plan to rely on numerical approximations to compute the above
probabilities in the general case. We assume in the following that we can compute those
probabilities. P denotes the corresponding matrix of size n ×K, with coefficients Pi,k. Thus,
to estimate the function f , we propose a new tree formula f̂(x) = T (x; Θ) :=

∑K
k=1 γkP(U ∈

Rk|X = x) defined by its parameters Θ = {(Rk, γk)1≤k≤K}.

4.1 Predictive rule

For 1 ≤ k ≤ K, constant γk has to be assigned to each region Rk such that the predictive rule
for a new observation x becomes: X = x⇒ f̂(x) =

∑K
k=1 γkP(U ∈ Rk|X = x). Each constant

is computed by minimizing the empirical quadratic risk defined in (3): for all 1 ≤ k ≤ K,

γ̂k =argmin
γk∈R

{Fn(f, γkP(Ui ∈ Rk|Xi = xi),L∗n)} =
(
P TP

)−1
P Ty, (6)

4.2 Split Rule

In the case of the learning set (1) and the model (2), the better split ŝjt for a node t minimizes
the impurity in both child nodes tL and tR:

ŝjt = argmin
{(tL,tR):t=tL∪tR}

[
Fn(f, f̂|tL ,Ln|tL) + Fn(f, f̂|tR ,Ln|tR)

]
(7)

= argmin
{(tL,tR):t=tL∪tR}

 1

n

K∑
k=1

∑
{i:xi∈tL}

(
yi − Pi(P TP )−1P T · y

)2
+

1

n

K∑
k=1

∑
{i:xi∈tR}

(
yi − Pi(P TP )−1P T · y

)2
Then, it minimizes the residual error in each child nodes tL and tR.
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5 Discussion
From this proposed construction process, we are planning to move to the random forest [5, 4]
or to Gradient Boosted Trees (GBT) [7, 8] to improve the performances. Further, we plan to
extend Quantile Regression Forests [6] to manage the uncertainty measures from the output
data and to take into account the information (PY , σY ) available in the learning set (1). In
the end, this approach will be extended to quantile regression GBT [9, 10, 11] to benefit from
both aspects. To this end, we plan to define a pruning step to be available to select the better
constructed tree among the sub-trees available via the maximal tree. Thus, the obtained set of
classifiers will be better and their weighted vote will be better again. We plan also to extend
this work to the classification trees construction.
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