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Abstract In this work, an EM estimation algorithm of a Structural Equation
Model (SEM) and its Latent Variables (LVs) is proposed. Unlike the more
prominent Covariance-Based SEM (CBSEM) approach, this estimation is not
based on the constrained estimation of the covariance structure of the data.
Latent variables are considered as missing data and the EM algorithm is used
to maximize the likelihood of the entire model, providing simultaneously esti-
mators of the model’s coefficients and predictions of LVs. Contrary to CBSEM
which does not take into consideration the structural part (equations of LVs
exclusively) of the SEM for the LVs prediction, this EM approach considers
the whole data and the complete model. In such context, when LVs are latent
factors, SEM includes factorial models in add to a structural part. Then con-
trary to the EM algorithm for maximum likelihood factor analysis, this work
extends the EM estimation in order to take into account the structural part of
the SEM (links between the latent factors). Through a simulation study, ac-
curacy and algorithmic performances are investigated. The prevail approaches
CBSEM and PLS-PM are compared to the EM estimation according to differ-
ent criteria. Finally, this approach is applied to a real environmental dataset,
providing interesting conclusions.
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1 Introduction

When it comes to modeling phenomena involving indirect measurements, SEMs
are handy and, as such, widely used. These allow to formalize the depen-
dence links of continuous observed variables (Bollen, 1989) through the use of
fewer unobserved ones. Every LV is assumed to be underlying a specific set of
OVs and summarizes their information. The set of these links are formalized
by a system of mathematical equations: measurement equations (describing
the links between the LVs and OVs) and structural equations (describing the
links between the LVs only). Such models originate in three different fields:
path analysis (Wright, 1921; Duncan, 1966), simultaneous-equation models
(Haavelmo, 1943; Koopmans, 1945), and factor analysis (Spearman, 1904;
Lawley, 1940; Anderson and Rubin, 1956), for which LVs are then consid-
ered as unknown unconstrained factors having a known distribution (typically
standard normal). Several multivariate statistical techniques were proposed
to handle the estimation of these models. Historically, in the early 1970s,
these three fields were merged; even though many researchers have signif-
icantly contributed (Jöreskog, 1970; Hauser and Goldberger, 1971; Zellner,
1970; Keesling, 2016; Wiley et al, 1973; Browne, 1974), it was the contri-
butions of K. Jőreskog on covariance-based SEM (CBSEM) Jöreskog (1973),
Jöreskog (1978), that prevailed the field. The CBSEM approach estimates SEM
parameters so that the discrepancy between the estimated and sample covari-
ance matrices is minimized. CBSEM (such as factor analysis) requires distri-
butional assumptions; then, a constrained maximum likelihood estimation is
proposed for this variance-covariance matrix. This approach was extended by
K. Jőreskog to a more general SEM which involves LInear Structural RELa-
tions (LISREL) between LVs (Jöreskog, 1970; Jöreskog and Sörbom, 1982).
Indeed, with D. Sőrbom, they developed the computer program LISREL, pro-
viding many applied researchers access to the field of SEMing. LISREL was
distributed commercially and few years later several new commercial software
packages for SEMing were developed, such as EQS (Bentler, 2006), AMOS
(Arbuckle, 2011) and Mplus (Muthén and Muthén, 2010). For example, works
of Muthén addressed several issues, such as General Linear Modeling, missing
data in OVs by means of the EM algorithm (Muthén et al, 1987; Muthén and
Muthén, 1998). These commercial tools are still used even if some free com-
puter programs are currently available such as lavaan R package or gllamm
which is developed in Stata (Rabe-Hesketh et al, 2004).
CBSEM approach is theoretically well grounded, but has some drawbacks.
First, the direct maximization of the likelihood of the variance-covariance ma-
trix is technically hard, and all the more so as the structural equation sys-
tem is complex. Secondly, concentrating on the variance-covariance matrix,
this approach does not directly provide estimates of the factor-values at unit
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level (called individual scores). Indeed, Unweighted Least Squares (ULS) has
been proposed by McDonald (1996), that adds to Jőreskog’s assumptions the
constraint that LVs are linear combinations of the observed ones and later,
Jöreskog (2000) completed the CBSEM approach with a second step to esti-
mate LVs scores. However, this method is based on a least squares technique
performed on the mere measurement equations, neglecting the structural equa-
tions of the SEM.
To overcome such drawbacks, an alternative approach to SEM has been pro-
posed by Wold (1966, 1973, 1982, 1985) and Lohmöller (1989): the Partial
Least Squares Path-Modeling (PLS-PM). LVs are then considered as com-
ponents, i.e. LVs scores are estimated as exact linear combinations of their
associated OVs and handles them as error free substitutes for the OVs. Con-
trary to CBSEM approach, no assumption is made as to their distribution,
and only least-square technique is involved in the estimation. This point can
be useful for situations where the data is not normally distributed. One should
note that PLS-PM is not to be confused with PLS regression (Hair et al, 2011).
In PLS-PM the explained variance of the endogenous LVs is maximized by es-
timating partial model relationships in an iterative sequence of ordinary least
squares. It has been shown that this method is computationally efficient and
more robust at convergence. Moreover, the components can be predicted from
OVs and so, scores are a direct output of this approach. Another advantage of
this approach is the ability to predict the values of dependent variables for new
statistical units. In spite of such commodities, the PLS-PM approach does not
deal appropriately with the partial relationships between components involved
in a multiple regression equation, as shown in (Bry and Verron, 2015), who
lately proposed an extended method to extract components suiting a multi-
ple equation model: THEME (Bry et al, 2012; Bry and Verron, 2015). Now,
constraining LVs to be components may be considered unnecessarily limiting
when one is not only interested in prediction, and the factoring approach still
makes more sense in this respect.
The present work proposes to focus on tackling this issue by viewing the fac-
tors’ values as missing data and using the EM algorithm (initially designed by
Dempster et al (1977)) to maximize the likelihood of the whole data. Extending
the use of the EM algorithm in a related way was proposed in the framework
of mixed linear models by Dempster et al (1981); Andrade and Helms (1984)
and then, in the framework of factor analysis (Rubin and Thayer, 1982). Rubin
and Thayer (1982) apply the EM algorithm on factorial models that can be
compared to a part of a SEM: the measurement equations. The great advan-
tage of EM over the classical Newton-Raphson, Fisher Scoring and Fletcher
and Powell algorithms is that the EM algorithm automatically allows to keep
parameters in their space and does not require to compute the hessian matrix
on each step. However, there exists some well-known potential problems of
this EM algorithm such as the ones pointed out by Bentler and Tanaka (1983)
on its slow convergence. Moreover, whereas Dempster et al (1977) prove that
even if the starting point is one where the likelihood is not convex, if an in-
stance of the algorithm converges, it will converge to a (local) maximum of
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the likelihood; this point is contested by Bentler and Tanaka (1983) and led
to the problem that EM for multidimensional optimization might tend to stop
at a point due to its slow convergence rather than due to a true optimal point
being reached. To tackle this issue, the initialization step is very important. An
initialization close to the maximum of the likelihood is useful to allow to the
EM estimation algorithm to converge to the maximum of the likelihood. This
work focuses on this important point and proposes an initialization step based
on PCA to address this EM algorithm weakness. Although CBSEM only con-
siders Full-Information Maximum Likelihood (FIML, (Arbuckle et al, 1996)),
using the EM algorithm has been considered by Muthén et al (1987); Tang and
Lee (1998); Lee and Tang (2006) in order to deal with censoring when it oc-
curs according to a known process. Our approach is different from all previous
ones, in that we neither consider the missing data to be partial or censored.
Nor do we consider the likelihood of the mere constrained sample variance-
covariance matrix, but that of the whole data and the complete model, which
is not the case in (Rubin and Thayer, 1982) that applies EM algorithm on
factorial equations corresponding to a part of a SEM. The proposed EM esti-
mation approach proposed focuses also on the structural equations (equations
of the latent factors only). Then, contrary to (Rubin and Thayer, 1982), the
EM algorithm is used to estimate the SEMs’ parameters and factors.
To keep the developments simple in the paper, the SEM is restricted to only one
structural equation, but it does not lessen the generality of our EM approach.
The rest of this paper is organized as follows. Section 2 formally introduces
the equations of the SEM we deal with. Section 3 presents the methodologi-
cal details of the EM algorithm application to the SEM and shows how the
EM algorithm estimation provides simultaneously both parameter and latent
factor estimates. Section 4 first presents a simulation-based study of the per-
formance of this EM approach, with comparison to prevail methods: CBSEM
and PLS-PM, and then illustrates an application to environmental data.

2 The SEM specification and notations

The data consists in blocks of OVs describing the same n units. To improve
readability, we use the notation A′ and v′ to specify the transpose of a matrix
A and a column vector v, respectively. Let, Xm = {xmi,j}; i ∈ {1, . . . , n} (the
row index), j ∈ {1, . . . , qm} (the column index), be the n× qm matrix coding
the explanatory block m ∈ {1, . . . , p} of OVs with xmi

′ =
(
xmi,1, . . . , x

m
i,qm

)
the qm-length row vector for the ith observation. Variable blocks refer to
the corresponding matrices. Let Y = {yi,j}; i ∈ {1, . . . , n} (the row index),
j ∈ {1, . . . , qY } (the column index) be the n×qY matrix coding the dependent
block of OVs with y′i = (yi,1, . . . , yi,qY ) the qY -length row vector for the ith
observation. Each block of OVs is depending on a factor: Y depending on a
factor g and each explanatory block Xm on a factor fm. T (resp. T 1, . . . , T p)
refers to a n× rT (resp. n× r1, . . . , n× rp) matrices of covariates. We assume
n observations; hence the rows of matrices Y,X1, . . . , Xp are independent and
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multivariate normal vectors. The SEM that we handle here consists of p + 2
equations and a diagrammatical representation is shown in Figure 1.

For each equation in this model, each observed variable in a block is ex-
pressed as a linear combination of the corresponding factor, the covariates,
and some noises. Hence, the model,

Y = TD + gb′ + εY

∀m ∈ {1, . . . , p}, Xm = TmDm + fmam′ + εm

g = f1c1 + · · ·+ f
p

c
p

+ εg
(1)

The corresponding equation set of the model (1), for a given observation i and
only two explanatories factors, reads

y′i = ti
′D + gib

′ + εi
y ′

x1i
′
= t1i

′
D1 + f1i a

1′ + εi
1′

x2i
′
= t2i

′
D2 + f2i a

2′ + εi
2′

gi = f1i c
1 + f2i c

2 + εi
g

(2)

where D (resp. Dm) is a rT × qY (resp. rm × qm) parameter matrix, b (resp.
am) a 1×qY (resp. 1×qm) parameter vector, cm a scalar parameter, εY (resp.
εm) an n × qY (resp. n × qm) measurement-error matrix. And all the factors
are n-length vectors. We impose that the first column of T as well as of each
Tm matrix is equal to the constant vector having all elements equal to one.
Thus, the first row of D and each Dm contain mean-parameters.
The SEM we handle here is a restricted one, containing only one structural
equation, relating a dependent latent factor g (underlying block Y ), to p ex-
planatory latent factors f1, . . . , fp (underlying respectively blocksX1, . . . , Xp).

The main assumptions of this model are as follows. As far as distributions
are concerned, we assume for all m ∈ {1, . . . , p} that εg ∼ N (0, 1) (The unit-
variance of noise εg serves an identification purpose), εYi ∼ NqY (0, ψY

), with
ψ

Y
= diag(σ2

Y,j)j∈{1,...,qY }, ε
m
i ∼Nqm(0, ψm), with ψm = diag(σ2

m,j)j∈{1,...,qm}.
Regarding the factors, we assume g is normal with zero-mean, and its expec-
tation conditional on f1, . . . , fp is a linear combination of them, then for all
m ∈ {1, . . . , p} we assume that fm ∼ Nn(0, In) with f1, . . . , fm indepen-
dent. In each block, we assume that the observed variables (Xm)m∈{1,...,p}
depend linearly on the block’s factor (fm)

m∈{1,...,p}
and a block of covariates1

(Tm)m∈{1,...,p}, conditional on which they are independent. We assume Y de-
pends linearly on the factors f1, . . . , fp and an covariate T . Finally, we assume
that εY and εm, εg and fm are mutually independent for all m ∈ {1, . . . , p}.

In order to both avoid heavy formulas in the development of the algorithm
and simplify the corresponding implementation, we shall use in the sequel,
with no loss of generality, the simplified model (2) involving p = 2 explanatory
blocks X1 and X2.

1 Including covariates allows to remove their effect on the OVs from that of the factor, and
thus, look for a better focused factor, which is very important in many practical situations.
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Fig. 1: The Structural Equation Model.

3 Estimation using the EM algorithm

The simultaneous estimation of the SEM’s parameters and factors consists
to carry out likelihood maximization through an EM algorithm (Dempster
et al (1977), Section 4.7). Each iteration of the algorithm involves an Expecta-
tion (E)-step followed by a Maximization (M)-step. Although Dempster et al
(1977) prove that the EM algorithm yields maximum likelihood estimates2,
some weaknesses in this algorithm are discussed in (Bentler and Tanaka, 1983),
answered by Rubin and Thayer (1983). They present the problem that EM for
multidimensional optimization might tend to stop at a point due to its slow
convergence rather than due to a true optimal point being reached. To tackle
this issue, the initialization step is very important. An initialization close to
the maximum of the likelihood will be presented in this section which allows to
the EM estimation method to converge to this maximum in few iterations. A
major advantage of the EM algorithm is that it can be used to predict missing
values through their expectation conditional on the observed data. Thus, if we
consider LVs as missing data, the EM algorithm is an adequate tool to max-
imize the likelihood of a statistical model involving LV’s, but also to predict
these LVs, which is the contribution of this work. In this SEM framework, the
LVs correspond to the factors. Thus, EM enables to simultaneously estimate
both the factors at unit-level and parameters of a complete SEM. The algo-
rithm is described on the model (2) with no loss of generality on both writing

2 More precisely, they proved that even if the starting point is one where the likelihood is
not convex, if an instance of the algorithm converges, it will converge to a (local) maximum
of the likelihood.
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of the SEMing and the algorithm development.

Let z = (y, x1, x2)′ be the OVs and h = (g, f1, f2)′ the factors correspond-
ing to LVs. The EM algorithm is based on the log-likelihood associated with
the complete data (z, h). Let p(z, h; θ) denote the probability density function
of the complete data. Concerning the model (2) the complete log-likelihood
function is as follows:

L(θ; z, h) =− 1

2

n∑
i=1

{ln|ψY |+ ln|ψ1|+ ln|ψ2|

+ (yi −D′ti − gib)
′
ψ−1Y (yi −D′ti − gib)

+
(
x1i −D1′t1i − f1i a1

)′
ψ−11

(
x1i −D1′t1i − f1i a1

)
+
(
x2i −D2′t2i − f2i a2

)′
ψ−12

(
x2i −D2′t2i − f2i a2

)
+
(
gi − c1 f1i − c2 f2i

)2
+
(
f1i
)2

+
(
f2i
)2}+ λ

(3)

where λ is a constant and θ = {D,D1, D2, b, a1, a2, c1, c2, σ2
Y , σ

2
1 , σ

2
2} is the

following K-dimensional set of parameters, with

K = 5 + qY (rT + 1) +

2∑
m=1

qm(rm + 1).

Indeed, to avoid heavy formulas in the development ψY = σ2
Y IqY , ψ1 = σ2

1Iq1
and ψ2 = σ2

2Iq2 are assumed.

3.1 Estimation of the SEM and its factors

To estimate the SEM, the function (3) has to be maximized. In the frame-
work of the EM algorithm (Foulley, 2002), the following equation is solved: To
maximize this function, in the EM framework (Foulley, 2002), we must solve:

Ehz
[
∂

∂θ
L(θ; z, h)

]
= 0. (4)

where Ehz
[
∂
∂θL (θ; z, h)

]
:=
∫

∂
∂θL (θ; z, h) p

h
z (θ) dh =

∫
∂
∂θL (θ; z, h) p (h|z; θ) dh,

with phi
zi is the conditional density function of hi conditional on zi for the ith

observation. To solve the Equation (4), the derivatives of the log-likelihood
function given in Equation (3) are needed. Classically, the use of numeric
methods are needed, but we deal with Gaussian distributions in this specific
case, and this causes phi

zi to be an explicit conditional Gaussian distribution.
Let us introduce the following notations:

phi
zi := N3

Mi =

m1i

m2i

m3i

 , Σ =

σ11 σ12 σ13σ21 σ22 σ23
σ31 σ32 σ33
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g̃i := Ehi
zi [gi] := m1i; γ̃i := Ehi

zi [g
2
i ] = (Ehi

zi [gi])
2 + Vhi

zi [gi] = m1
2
i + σ11,

f̃1i := Ehi
zi [f

1
i ] = m2i; φ̃1i := Ehi

zi [(f
1
i )

2] = (Ehi
zi [f

1
i ])

2 + Vhi
zi [f

1
i ] = m2

2
i + σ22,

f̃2i := Ehi
zi [f

2
i ] = m3i; φ̃2i := Ehi

zi [(f
2
i )

2] = (Ehi
zi [f

2
i ])

2 + Vhi
zi [f

2
i ] = m3

2
i + σ33

The parameters of the normal distribution phi
zi are explicit and their form

are described and demonstrated in Appendix B. Expressions of the first-order
derivatives of L with respect to θ are established and described in Appendix
C.

3.2 Results

The explicit solution of Equation (4) is then obtained by injecting the first-
order derivatives of L with respect to θ in Equation (4). This procedure is
also described in Appendix C and for the model (2), the following system
characterizing the solution of (4) is obtained:



b̂ = (g̃y−yt′)(tt′)−1 g̃t

γ̃−g̃t′(tt′)−1g̃t

âm = f̃mxm−xmtm′(tmtm′)−1f̃mtm

φ̃m−f̃mtm′(tmtm′)−1f̃mtm

ĉ1 = (σ12+f̃1g̃)φ̃2−(σ13+f̃2g̃)(σ23+f̃1f̃2)

φ̃1φ̃2−(σ23+f̃1f̃2)2

ĉ2 = (σ13+f̃2g̃)φ̃1−(σ12+f̃1g̃)(σ23+f̃1f̃2)

φ̃1φ̃2−(σ23+f̃1f̃2)2

D̂′ = (yt′ − b̂ g̃t′)(tt′)−1

D̂m′ = (xmtm′ − âmf̃mtm′)(tmtm′)−1

σ̂2
Y = 1

nq
Y

n∑
i=1

{||yi − D̂′ti||2 + ||b̂||2γ̃i − 2(yi − D̂′ti)′b̂g̃i}

σ̂2
m = 1

nqm

n∑
i=1

{||xmi − D̂m′tmi ||2 + ||âm||2φ̃mi − 2(xmi − D̂m′tmi )′âmf̃mi }

(5)
where xm := 1

n

∑n
i=1 x

m
i , ∀m ∈ {1, . . . , p} the average on the index i. This

kind of system (solution of Equation (4)) can be obtained such as described
by the procedure in Appendix C for any kind writing of SEM (1).

3.3 The algorithm

This algorithm is implemented and available as an R package on GitHub3.
This EM algorithm estimation for a SEM was applied to a Health-related
quality of life longitudinal data (Barbieri et al, 2017; Tami, 2016). Indeed,

3 https://github.com/myriamtami/EMsem.
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after estimations of the latent factors of a SEM produced by this algorithm,
a second step is performed to explain the global health status of patients by
additional explanatory variables using a linear mixed model.

Input :
– {Y,X1, . . . , Xp} data matrices: blocks of OVs;
– ε, precision for the stopping criterion;

Initialization:

– Initialize the set of the SEM parameters θ∗(0); #θ∗ is the K-dimensional
vector containing the values of all scalar parameters in θ.

– t← 0;# t is the iteration index

L_Factors← ∅; #List of predictions of the factors concatenation(
g̃, f̃1, . . . , f̃p

)
L_Factors_sq ← ∅; #List of the concatenation

(
γ̃, φ̃1, . . . , φ̃p

)
repeat

# E-step
for i ∈ {1, . . . , n} do

#Compute the parameters of the distribution p
hi
zi

M [i]← Ehi
zi

[(
gi, f

1
i , . . . , f

p
i

)]
; #the formula is detailed in Appendix C

Σ[i]← Vhi
zi

[(
gi, f

1
i , . . . , f

p
i

)]
; #the formula is detailed in Appendix C

M_sq[i]←M [i] ·M [i];
L_Factors[t]←M ; #prediction of the latent factors
L_Factors_sq[t]←M_sq + diag (Σ);

end
# M-step
for k ∈ {1, . . . ,K} do

#Update θ to θ(t+1) by injecting g̃(t), γ̃(t) and f̃m
(t)
, φ̃m

(t)
,

m ∈ {1, . . . , p} into Formulas in (9)
θ(t+1) ← θ̂(t) (L_Factors[t], L_Factors_sq[t]);
t← t+ 1;

end
until

K∑
k=1

|θ∗(t+1)[k]− θ∗(t)[k]|
|θ∗(t+1)[k]|

< ε

Output : Set of the estimations of the parameters θ(t+1) and the set of the
predictions of the factors L_Factors[t]

Algorithm 1: EM algorithm for the simultaneous estimation of a SEM
parameters and its latent factors.

In the initialization step, ∀m ∈ {1, . . . , p} we propose to obtain Dm(0) by
multiple linear regression of Xm on Tm. Then, to initialize the other param-

eters, each approximated factor f̃m
(0)

and g̃(0) is computed as first principal
component of Xm−TmDm(0) and Y −TD(0). Then, am, σ2

m (resp. b, σ2
y) are

initialized through a multiple linear regression of Xm − TmDm(0) on f̃m
(0)

(resp. of Y − TD(0) on g̃(0)). Finally, each cm(0) can be obtained by multiple
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linear regression of g̃(0) on the p factors f̃m
(0)

. This tricky procedure allows
an initialization close to the maximum of the likelihood.
Experiments with the criterion used in the Algorithm (1) has revealed no
problems but the user could easily change it as his convenience. A more strict
criterion can be used here, for example (Schoenberg and Richtand, 1984) com-
pares the update estimate of each parameter with their corresponding value
then, if the absolute value of the previous estimate minus the updated esti-
mate of any of them is greater than some small value ε, the algorithm returns
to the E-step; otherwise the solution has been reached.

4 Tests and performances of the algorithm

4.1 Numerical results on simulated data

4.1.1 Data generation

To test and evaluate performances of the algorithm, a data generation pro-
cedure is performed 100 times, each time yielding a set of simulated data
(Y,X1, X2, T, T 1, T 2). Each set is composed of n = 400 units and qY = q1 =
q2 = 40 the number of dimensions in of OVs blocks. Therefore, the 120 OVs
Y,X1, X2 are simulated so as to be structured respectively around three fac-
tors g, f1, f2. Factors f1 and f2 are explanatory of g. Besides, 2 covariates
rT = r1 = r2 = 2 are simulated for each covariate matrix T , T 1 and T 2. Each
set of simulated data is simulated as follows:

1. Choice of the parameter values θ is as follows:
(a) D = D1 = D2 = are matrices filled row-wise with the ordered integer

sequence ranging from 1 to 80 (indeed: rT × qY = r1 × q1 = r2 × q2 =
2× 40);

(b) b = a1 = a2 = are ordered integer sequence ranging from 1 to 40;
(c) c1 = c2 = 1;
(d) σ2

Y = σ2
1 = σ2

2 = 1.
2. Simulation of factors g, f1, f2 is as follows:

(a) Simulate n = 400 length vectors f1 and f2 with a standard normal
distribution (abbreviated ∀m,∈ {1, 2}
fm ∼ N400(0, I));

(b) Simulate εg according to distribution εg ∼ N400(0, I);
(c) Calculate g = f1c1 + f2c2 + εg.

3. Simulation of noise matrices εY , ε1, ε2:
Each element of matrix εY , (resp. ε1, ε2) is simulated independently from
distribution N (0, σ2

Y ) with σ
2
Y = 1 as chosen in the first step (resp. σ2

1 = 1,
σ2
2 = 1).

4. Simulation of covariate matrices T , T 1, T 2:
Each element of matrices T , T 1, T 2 is simulated according to the standard
normal distribution.
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5. Simulation of Y , X1, X2:
Y , X1, X2 are eventually calculated through formulas in the Model (1).

This simulation scheme was performed 100 times, each time yielding a set of
simulated data matrices (Y,X1, X2, T, T 1, T 2); moreover, an estimation rou-
tine with a threshold value ε = 10−2 was also performed, yielding the average
results presented in section 4.2. Thus from 400× 120 = 48000 scalar elements
of data, 3×n = 1200 scalar elements of factors plus K = 5+3×40(2+1) = 365
scalar parameters (i.e. 1565 scalars) was estimated.

4.1.2 Results

Convergence is observed in almost all cases in less than five iterations. We
assess the quality of the estimations as follows.

– On the one hand, we compute the absolute relative deviation between
each simulated scalar parameter in θ and its estimate, and then average
these deviations over the 100 simulations. We then produce a box plot
of the average absolute relative deviations (see Figure 2). This makes the
interpretation easier, since we only need to look at the box plot’s values
and check that they are positive (because of the absolute value) and close
to 0.

– On the other hand, to assess the quality of the factor estimations, we
compute the 300 values of square correlations between the simulated con-
catenated factors (g, f1, f2) (respectively) and the corresponding estimates
(g̃, f̃1, f̃2). Once again, we produce a box-plot of these correlations (cf. Fig-
ure 3) and check that it indicates values close to 1.

Figures 2 and 3 show clearly that the estimates are very close to the actual
quantities. Indeed, on Figure 2, the median of average absolute relative devia-
tions is 0.018, first and third quartiles being 0.015 and 0.023 respectively. On
Figure 3, the median of square correlations is 0.998, first and third quartiles be-
ing 0.997 and 0.999 respectively. So, factor g (respectively f1 and f2) turn out
to be drawn towards the principal direction underlying the bundles made up
by OVs Y (respectively X1 and X2). Now, we may legitimately wonder how
the quality of estimations could be affected by the number of observations
and the number of OVs in each block. In the following section we provide a
sensitivity analysis performed to investigate this issue.

4.1.3 Sensitivity analysis4 of estimations: empirical behavior study of both the
parameter and latent factor estimates

A sensitivity analysis is performed on the sets of simulated data presented
in Section 4.1. The purpose is to investigate how the quality of the estima-
tions could be affected by the number n of subjects and the number qY ,

4 "Sensitivity analysis" is here used in a different meaning from the "sensitivity analysis"
as introduced by Saltelli et al (2000).
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Fig. 2: Box plot of the average absolute rel-
ative deviations of the simulated parame-
ters and their estimates.

Fig. 3: Box plot of the correlations of the
simulated factors and their estimates.

Fig. 4: Box plots of the correlations of sim-
ulated factors and their estimates for var-
ious values of n.

Fig. 5: Box plots of the correlations of sim-
ulated factors and their estimates for var-
ious values of q.

(qm)m=1,2 of observed variables in each block. To simplify the analysis, we
imposed qY = q1 = q2 = q and varied n and q separately, i.e. studied the cases
n = 50, 100, 200, 400 with q = 40 and q = 5, 10, 20, 40 with n = 400. Each case
was simulated 100 times. Therefore, we simulated 800 data-sets.

Sensitivity with respect to the number of observations n In this section, we
study the evolution with n of the average estimation of structural coefficients
c1 and c2 and parameter σ2

Y with respect to their actual values, all equal to 1,
and that of the correlations of factors with their estimates. The number of OVs
is set to q = 40 in each block. Figure 6 graphs these evolutions (average value
of estimate in plain line), including an interval constructed by plus and minus
the standard deviation (computed on the estimations) about each average
estimate (dotted line). This figure shows that the biases and the standard
deviations are, as expected, more important for little values of n, but also
that the quality of estimation is already quite good for n = 50. As for the
correlations of factors with their estimates, Figure 4 shows that they increase
and get close to one as n increases, with a dispersion decreasing to 0. However,
even for n = 50, the correlations are mostly above 0.95, indicating that the
factors are correctly reconstructed.

Sensitivity with respect to the number q of OVs in each block Likewise,
the evolution of the average estimates of c1, c2, σ2

Y and the correlation of
factors with their estimates is studied for different values of q, with n set
to 400. Unsurprisingly, the biases and the standard deviations decrease as q
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Fig. 6: Average estimates of c1, c2, σ2
Y and 95% confidence intervals as a function of n and

as a function of q.

increases (see Figure 6). In fact, they stabilize even faster with q than with
n, particularly σ2

Y . Indeed, from q = 10 on, the confidence interval is narrow
enough. As for the factors, Figure 5 shows that their correlations with their
estimates are already very close to 1 for q = 5, with a very small variance, and
keep increasing with q. To sum things up, the sample size n proved to have
more impact on the quality of parameter estimation and factor reconstruction
than the number of OVs. Now, the quality of factor reconstruction remains
high for rather small values of n or q. We advise to use a minimal sample size
of n = 100 to obtain really stable structural coefficients. Above this threshold,
n has but little impact on the biases and standard deviations of estimates.

4.2 Comparison to the prevail methods: CBSEM and PLS-PM

Numerical results obtained in the last section provide useful information to
compare the EM estimation approach to the classical methods. Table (1),
inspired by (Stan and Saporta, 2006) presents a comparison between CBSEM,
PLS-PM and the EM estimation approaches according to different criteria:
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Characteristics CBSEM PLS-PM EM-estimation
Goal oriented the SEM’s parameters the SEM’s prediction the SEM’s parameters
towards estimation estimation and

latent factors prediction
LVs Factors Components Factors
Assumptions Independent units and Independent units Independent units and

multivariate normal multivariate normal
distribution distribution

Optimality for parameters estimation prediction accuracy factors prediction and
accuracy parameters estimation

accuracy
Sub-models structural measurement trade-off between
quality model better model better sub-models because

because the LVs are because LVs are the complete model is
estimated in an contained in the used for LVs and
unrestricted space space of their OVs parameters estimation

Parameters Var-covariance Least square ML estimation
estimation structure and technique and of the complete

ML estimation regressions model
LVs estimation Least square Combinations ML estimation
or reconstruction technique of the OVs of the complete

performed on they are model
the mere related to
measurement
equations

Parameters and
LVs estimation separately simultaneously simultaneously
of the SEM are
handled
Covariables
handled NO NO YES
by the model
Convergence matrices must observed for more both

to be not singular than two blocks
Complexity of medium: great, for example: great: more than 4 OVs
the model less than < 100 OVs 100 LVs, 1000 OVs by block
Minimal number great few medium
of units (n ∈ {200, . . . , 800}) (n ∈ {30, . . . , 100}) (n > 100)
Identifiability more than 4 OVs always identified more than 4 OVs
by block with the by block

recursive model
application fields sociology, marketing, medicine,

psychologies etc. satisfaction etc. environment, etc.
Computational few minutes few seconds few seconds
time
R packages lavaan semPLS EMsem

Table 1: Comparison between CBSEM, PLS-PM and the EM estimation approach.

This Table (1) allows one to spot advantages of each method and provides indication
to pick the approach which is more adapted to one’s personal studied case. For example, in
the medicine field case, if the user wants to handle treatment (supplementary) covariates in
a SEM such as in Model (1) (Barbieri et al, 2017), the EM estimation approach seems to
be more appropriated.
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Fig. 7: Correlation-scatterplot yielded by the PCA of the X1 and X2 geo-referenced envi-
ronmental variables (obtained with the FactoMineR R-package).

5 An application to environmental data

5.1 Data presentation

Our model is applied to the data-set genus, built from the CoForChange database and
provided in the R-package SCGLR developed by Mortier et al (2014). It gives the abun-
dances of 27 common tree genera present in the tropical moist forest of the Congo-Basin,
and the measurements of 40 geo-referenced environmental variables, for n = 1000 inventory
plots (observations). Some of the geo-referenced environmental variables describe 16 physical
factors pertaining to topography, geology and rainfall description. The remaining variables
characterize vegetation through the enhanced vegetation index (EVI) measured on 16 dates.
In this section, we aim at modeling the tree abundances from the other variables, while re-
ducing the dimension of data. The dependent block of variables Y therefore consists of the
qY = 27 tree species counts divided by the plot-surface. A PCA of the geo-referenced envi-
ronmental variables and the photosynthetic activity variables confirms that EVI measures
are clearly separated from the other variables (cf. Figure 7). Indeed, Figure 7 shows two
variable-bundles with almost orthogonal central directions. This justifies using our model
(cf. Section 5.2) with p = 2 explanatory groups, one of them (X1) gathering q1 = 16 rainfall
measures and location variables (longitude, latitude and altitude), and the second one (X2),
the q2 = 23 EVI measures. Besides, in view of the importance of the geological substrate on
the spatial distribution of tree species in the Congo Basin, showed by Fayolle et al (2012), we
chose to put nominal variable geology in a block T . This block therefore contains constant
1 plus all the indicator variables of geology but one, which will therefore be the reference
value. Geology having 5 levels, T has 5 columns.

5.2 Model specification with geologic covariates

Here is the model used with the variable-blocks designed in Section 5.1.:
Y = TD + gb′ + εY

X1 = 1nd1
′
+ f1a1

′
+ ε1

X2 = 1nd2
′
+ f2a2

′
+ ε2

g = f1c1 + f2c2 + εg
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where n = 1000, qY = 27, q1 = 16, q2 = 23 and rT = 5. The first row of D is a parameter
vector that contains the means of the Y ’s, and the other rows contain the overall effects of
the geological substrates with respect to the reference one. Next section presents the model’s
parameter-estimates where, in Table 2, each row r of D is noted D[r, ].

5.3 Results

With a threshold value ε = 10−3, convergence was reached after 58 iterations. Some
parameter-estimates are presented in Tables 2 and 3. For practical reasons, the remaining
tables of parameter-estimates are given in the supplementary material.

Parameter-estimates
Variables D[1, ] D[2, ] D[3, ] D[4, ] D[5, ] b Correlations with g̃

gen1 0.76 0.16 0.06 0.68 -0.12 -0.13 -0.14
gen2 0.54 -0.28 -0.03 -0.03 -0.28 0.47 0.58
gen3 0.41 -0.23 -0.02 0.25 -0.37 0.29 0.36
gen4 0.12 0.14 0.03 0.52 0.30 0.09 0.15
gen5 0.31 0.15 0.19 -0.20 0.84 0.09 0.16
gen6 0.55 -0.12 -0.26 0.06 -0.02 0.14 0.18
gen7 0.46 0.06 -0.04 -0.37 0.43 0.14 0.18
gen8 0.55 0.04 -0.09 -0.16 0.04 0.42 0.52
gen9 0.92 -0.54 0.26 -0.66 -0.61 0.07 0.03
gen10 0.68 0.40 0.20 0.37 0.06 -0.32 -0.39
gen11 1.74 -0.50 -0.21 0 -0.67 0.33 0.39
gen12 0.87 0.14 0.73 -0.51 -0.21 0.24 0.26
gen13 1.08 -0.09 -0.37 -0.02 -0.53 0.26 0.29
gen14 0.41 -0.16 -0.10 0.12 -0.36 -0.05 -0.07
gen15 0.51 0.01 -0.11 0.27 -0.18 0.29 0.37
gen16 0.50 -0.19 -0.01 0.55 -0.27 0.1 0.14
gen17 0.79 -0.54 -0.20 -0.52 -0.45 0.39 0.45
gen18 0.16 -0.05 0.20 0.03 -0.03 0.18 0.23
gen19 0.34 0.06 0.41 -0.11 0.38 0.23 0.31
gen20 0.49 0.02 -0.21 0.08 0.14 -0.2 -0.24
gen21 0.79 -0.30 -0.12 0.71 -0.13 0.12 0.19
gen22 0.32 -0.07 -0.07 0.38 -0.11 0.23 0.3
gen23 1.02 -0.28 -0.31 0 -0.07 0.46 0.58
gen24 0.80 -0.23 -0.08 0.22 -0.47 0.57 0.7
gen25 0.60 -0.16 -0.04 0.97 -0.49 0.41 0.53
gen26 0.84 0.22 0.27 -0.70 0.82 0.04 0.07
gen27 0.27 0.41 0.69 -0.24 0.56 0.08 0.11

Table 2: Application to the genus data with geologic covariate : estimates of parameters D and
b, and correlations of g̃ with the variables in Y .

Scalar parameter-estimates
c1 c2 σ2

1 σ2
2 σ2

Y

0.35 0.01 0.50 0.53 0.84

Table 3: Application to genus data with geologic covariate: scalar parameter-estimates.

It can be seen in Tables 2 and 4 that for certain species, the geologic substrate seems to
be of great importance (e.g. for gen1, gen5, gen7, gen9, gen12, gen16, gen21, gen25, gen26,
gen27), whereas for others, it only has a small impact on the abundances (e.g. for gen2,
gen6, gen8, gen10, gen18, gen20, gen23). Moreover, Table 2 shows that the correlations of
g̃ with Y are high in absolute value only for few variables : gen2, gen23, gen24 and gen25.
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Fig. 8: Correlations of f̃1 with the monthly variables of X1: two rainfall regimes.

Therefore, only these are well accounted for by our model. Although we have carried out
the analysis with variables gen2, gen3, gen8, gen10, gen11, gen15, gen17, gen23, gen24 and
gen25, the results are practically the same as when we take all variables. The correlations
of f̃1 with variables pluvio_1 to pluvio_12 of X1 show two rainfall regimes (cf. Figure 8).
Indeed, pluvio_1 corresponds to january, pluvio_2, to february, ..., pluvio_12 to december.
The Central African Republic has a tropical climate : the dry season ranges from November
to April and the rainy season from June to September. Figure 8 shows that f̃1 is positively
correlated to the rainfalls of the rainy season and negatively to those of the dry one.

5.4 Assessing the model quality through re-sampling

To assess the stability of results and thus, validate the models with covariate, we used a
5-fold re-sampling technique: 5 separate 200 units-samples were randomly extracted from
the complete genus. For each, we obtained estimated parameters and factors. Then, for each
sample, we computed an average Mean Square Error (MSE) and an average correlation
of the parameter-estimates obtained on the sample with those obtained on the complete
data. Finally, on each sample, we calculated an average MSE and correlation of the factor-
estimates obtained on the sample with the corresponding ones obtained on the complete
data for the units belonging to the sample.

Figure 9 (resp. 10) shows the average MSE (resp. the correlation) between parameters
θs∈{1,...,5} estimated on 5 data samples (s the index of set of parameters θ associated to
the sth data sample) and parameters estimated on the complete data θ. More precisely, for
these average MSE (respectively correlations), the median is 3.85 × 10−3 (resp. 0.99), the
first quartile is 1.95 × 10−3 (resp. 0.99) and the third quartile is 6.17 × 10−3 (resp. 0.99).
These values are close to 0 (resp. 1). Thus, we can be rather confident in the estimates of
parameters obtained in the previous section.

Figure 11 and Figure 12 respectively give the box-plot of the factors’ average MSE and
correlation for each of the 5 samples. More precisely, for these average MSE’s (respectively
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Fig. 9: Box plot of the average MSE’s of
the parameter-estimates obtained on the
5 genus data sub-samples and those ob-
tained on the complete data.

Fig. 10: Box plot of the average correla-
tions of the parameter-estimates obtained
on the 5 genus data sub-samples and those
obtained on the complete data.

Fig. 11: Box-plot of the average MSE of
factor-estimates.

Fig. 12: Box-plot of the average correlation
of factor-estimates.

correlations), the median is 1.15× 10−2 (resp. 0.98), the first quartile is 7.44× 10−3 (resp.
0.98) and the third quartile is 3.53× 10−2 (resp. 0.99). These values are close enough to 0
(resp. 1) to allow us to be confident in the estimates obtained on the complete data.

6 Conclusion

The maximum-likelihood estimation method is known to be a stringent method of estimation
with nice properties. In the context of estimation methods of a SEM, the CBSEM approach
is based on likelihood maximization, contrary to PLS-PM and other component-based meth-
ods. However, CBSEM mainly focuses on the variance-covariance structure, the likelihood of
which it maximizes under constraints. CBSEM approach does not use the structural equa-
tions of the overall SEM: the LVs scores estimation is based on a least squares technique
performed exclusively on the mere measurement equations. To estimate both parameters and
scores in a row, we proposed to carry out likelihood maximization of the complete model
(i.e. both structural equations and measurement equations) through the EM algorithm with
a smart initialization step based on PCA which allows avoiding the well-known potential
problems of this algorithm. This approach assumes that LVs are factors, which is less con-
straining than assuming they are components. Therefore, this approach has clear advantage
over the more classical ones. And the EM approach and CBSEM can be viewed as comple-
mentary methods. Sensitivity analysis allowed to assess its performances. Eventually, the
application on environmental data proved satisfactory and demonstrated how to practically
use this method. Furthermore the EM estimation approach can handle supplementary co-
variate such as the geology in the application on environmental data or the treatment in the
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medicine case (Barbieri et al, 2017). The implementation of the EM approach is available
as an R package on GitHub.
This approach is being numerically compared with lavaan and semPLS R implementations
of the CBSEM and PLS-PM methods. Very encouraging preliminary results show that the
EM approach provides predictions of latent factors more accurately than PLS-PM and then
CBSEM. For the parameters estimation, they seem to be all 3 comparable although for some
parameters the comparison seems difficult. Indeed, some parameters are fixed to the unit at
CBSEM to allow the identifiability of the model. Other conditions are set for the EM ap-
proach. In addition, for some small data sizes, CBSEM does not work while PLS-PM and the
EM approach provide good results. Although these results are encouraging, the SEM model
for which the EM approach is presented here deserves to be complexifed. It is envisaged to
add correlated errors (Schoenberg and Richtand, 1984) and to continue the comparison work
between SEM estimation approaches. An idea could be the use of generalized least-squares
approach in the M-step such as proposed in (Schoenberg and Richtand, 1984). But, even
if experiments with this method has revealed no issues (Schoenberg and Richtand, 1984)
precises that this process provides only asymptotically maximum likelihood. Therefore the
convergence is not guaranteed. Another perspective of this EM estimation approach, which
is a current collaborative work, is about the development of a supplementary step to catch
the different explanatory blocks of the OVs in an unsupervised way. Indeed, to construct
practically a model and to identify the explanatory blocks of OVs, the use of PCA is pro-
posed in the Section 5. Instead of this manual step, we propose to add an algorithm step
which, given an assumed number of explanatory blocks, computes the probability that each
explanatory variable belongs to one block.

Appendix A. Calculation of the complete data log-likelihood func-
tion L

In the case of the simplified model (2), p = 2, ψY = σ2
Y IqY , ψ1 = σ2

1Iq1 and ψ2 = σ2
2Iq2 ,

and for observation i we have,
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where θ = {D,D1, D2, b, a1, a2, c1, c2, ψY , ψ1, ψ2} is the set of model parameters. Therefore,

L(θ; zi, hi) = L(θ;x1i |f1i ) + L(θ;x2i |f2i ) + L(θ; yi|gi) + L(θ; gi|f1i , f2i ) + L(f1i ) + L(f2i )

Because of the model and the normal distribution properties we obtain:
xmi |fmi ∼ N (tmi

′Dm + fmi a
m′, ψXm )

yi|gi ∼ N (ti
′D + gib

′, ψY )
gi|f1i , f2i ∼ N (f1i c

1 + f2i c
2, 1)

fmi ∼ N (0, 1)
Then, we get the complete data log-likelihood function (3), where λ is a constant. Also, the
set of model parameters θ = {D,D1, D2, b, a1, a2, c1, c2, ψY , ψ1, ψ2} in our case corresponds
to θ = {D,D1, D2, b, a1, a2, c1, c2, σ2

Y , σ
2
1 , σ

2
2} because of the simplification made in the
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section 2.3. Indeed, ψY = σ2
Y IqY , ψ1 = σ2

1Iq1 and ψ2 = σ2
2Iq2 .

Therefore, we can also write the complete data log-likelihood function with replacing ln|ψY |
(resp. ∀m ∈ {1, 2}, ln|ψm|) by qY ln(σ2

Y ) (resp. ∀m ∈ {1, 2}, qmln(σ2
m)).

Appendix B. Distribution of hi|zi

In the case of the simplified model (2), p = 2, ψY = σ2
Y IqY , ψ1 = σ2

1Iq1 and ψ2 = σ2
2Iq2 ,

and for observation i, the normality of the distribution of hi|zi presented in section 3.1.2.
derives from the classical result5 about the conditioning of normally distributed variables.
Before using this result, we calculate the joint distribution of (gi, f1i , f

2
i , yi, x

1
i , x

2
i ).

We know that, for observation i,
yi ∼ N (D′ti, b((c1)2 + (c2)2 + 1)b′ + ΨY )
xmi ∼ N (Dm′tmi , a

mam′ + Ψm)
gi ∼ N (0, (c1)2 + (c2)2 + 1)
fmi ∼ N (0, 1)
Then, after calculating the required covariances we obtain,
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Then, after calculating the required covariances we obtain the joint distribution, (gi, f1i , f
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N (M∗i , Σ
∗) such that,
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 and Σ∗ =
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Σ∗1 Σ∗2
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′ Σ∗3

)
.

Where, Σ∗1 =

(c1)2 + (c2)2 + 1 c1 c2

c1 1 0

c2 0 1

; Σ∗2 =

((c1)2 + (c2)2 + 1)b′ c1a1
′
c2a2

′

c1b′ a1
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Finally, we use result (6) and obtain the distribution, hi|zi ∼ N (Mi, Σ) where, Mi =

Σ∗2Σ
∗
3
−1µ∗i and Σ = Σ∗1 −Σ∗2Σ∗3

−1Σ∗2
′, such that µ∗i =

 yi −D′ti
x1i −D1′t1i
x2i −D2′t2i

.

5 If two variables X1 and X2 are normally distributed such that,(
X1

X2

)
∼ N

(
µ =

(
µ1
µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

))
where, µ1 (r × 1), µ2 (s× 1), Σ11 (r × r), Σ12(r × s), Σ21 (s× r) and Σ22 (s× s);
then,

(X1|X2 = x2) ∼ N (M = µ1 +Σ12Σ22
−1(x2 − µ2), φ = Σ11 −Σ12Σ22

−1Σ21) (6)
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Appendix C. Calculation of the first-order derivatives of L and
demonstration of the estimators’ formulas of the SEM parameters
θ̂

We calculate the first-order derivatives of the complete data log-likelihood function (3),
where θ = {D,D1, D2, b, a1, a2, c1, c2, ψY , ψ1, ψ2}, ψY = σ2

Y IqY , ψ1 = σ2
1Iq1 and ψ2 =

σ2
2Iq2 .

There are matrix-parameters (D,D1, D2), vector-parameters (b, a1, a2) and scalar param-
eters (c1, c2, σ2

Y , σ
2
1 , σ

2
2). Then, L is a sum of three types of functions: the logarithm, the

square function and a quadratic form function (w−Xβ)′Γ (w−Xβ), where Γ is symmetric
and w (q × 1), X (q ×m), β (m× 1) and Γ (q × q). The first-order derivatives of the loga-
rithm function and the square function are in our case trivial. The first-order derivative of
(w −Xβ)′Γ (w −Xβ) with respect to X is less trivial but necessary.

dX [(w −Xβ)′Γ (w −Xβ)] = (w −Xβ)′Γ (−dXβ) + (−dXβ)′Γ (w −Xβ)
= −2(w −Xβ)′Γ (dXβ)
= tr[−2(w −Xβ)′Γ (dXβ)]
= tr[−2β(w −Xβ)′ΓdX]

=< −2β(w −Xβ)′Γ |dX >

Therefore,

d

dX
[(w −Xβ)′Γ (w −Xβ)] = (−2β(w −Xβ)′Γ )′

= −2(β(w −Xβ)′Γ )′

= −2Γ (w −Xβ)β′

Likewise, we establish that :
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Y (yi −D′ti − gib)ti′

Similar reasoning can be applied to Dm and allows to obtain the second row of the
following system (7) characterizing all the first-order derivatives of L with respect to θ:

∂
∂D′L(z, h) =

n∑
i=1

ψ−1
Y (yi −D′ti − gib)ti′

∂
∂Dm′L(z, h) =

n∑
i=1

ψ−1
m (xmi −Dm

′tmi − fmi am)tmi
′

∂
∂b
L(z, h) =

n∑
i=1

giψ
−1
Y (yi −D′ti − gib)

∂
∂am
L(z, h) =

n∑
i=1

fmi ψ
−1
m (xmi −Dm

′tmi − fmi am)

∂
∂cm
L(z, h) =

n∑
i=1

fmi (gi − c2 f2i − c1 f1i )

∂
∂σ2

Y

L(z, h) = n qY σ−2
Y − σ−4

Y

n∑
i=1
||yi −D′ti − gib||2

∂
∂σ2

m
L(z, h) = n qm σ−2

m − σ−4
m

n∑
i=1
||xmi −Dm

′tmi − fmi am||2.

(7)

Concerning the third and the fourth row of (7), we use the classical result :

∂

∂β
[(w −Xβ)′Γ (w −Xβ)] = −2X′Γ (w −Xβ)
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Eventually, the fifth, the sixth and the eighth rows of (7) are obtained in a trivial way.
To obtain the estimators’ formulas of the SEM parameters θ̂, formula (4) (and also (7))
develops into:



n∑
i=1

(yi −D′ti − g̃ib)ti′ = 0

n∑
i=1

(xmi −Dm
′tmi − f̃mi a

m)tmi
′ = 0

n∑
i=1

g̃iyi − g̃iD′ti − γ̃ib = 0

n∑
i=1

f̃mi x
m
i − f̃mi D

m′tmi − φ̃mi a
m = 0

n∑
i=1

σ12 + f̃1i g̃i − c
2 σ23 − c2 f̃1i f̃2i − φ̃1i c

1 = 0

n∑
i=1

σ31 + f̃2i g̃i − c
2 φ̃2i − c

1σ32 − c1f̃1i f̃2i = 0

nqY σ
−2
Y − σ−4

Y

n∑
i=1
||yi −D′ti||2 + ||b||2γ̃i − 2(yi −D′ti)′g̃ib = 0

nqmσ
−2
m − σ−4

m

n∑
i=1
||xmi −Dm

′tmi ||2 + ||am||2φ̃mi − 2(xmi −Dm
′tmi )′f̃mi a

m = 0

(8)

System (8) is easy to solve and as an example, the following system characterizing the
solution of (4) for the model (2):



b̂ =
(g̃y−yt′)(tt′)−1 g̃t

γ̃−g̃t′(tt′)−1g̃t

âm =
f̃mxm−xmtm′(tmtm′)−1f̃mtm

φ̃m−f̃mtm′(tmtm′)−1f̃mtm

ĉ1 =
(σ12+f̃1g̃)φ̃2−(σ13+f̃2g̃)(σ23+f̃1f̃2)

φ̃1φ̃2−(σ23+f̃1f̃2)2

ĉ2 =
(σ13+f̃2g̃)φ̃1−(σ12+f̃1g̃)(σ23+f̃1f̃2)

φ̃1φ̃2−(σ23+f̃1f̃2)2

D̂′ = (yt′ − b̂ g̃t′)(tt′)−1

D̂m′ = (xmtm′ − âmf̃mtm′)(tmtm′)−1

σ̂2
Y = 1

nq
Y

n∑
i=1
{||yi − D̂′ti||2 + ||b̂||2γ̃i − 2(yi − D̂′ti)′b̂g̃i}

σ̂2
m = 1

nqm

n∑
i=1
{||xmi − D̂m

′tmi ||2 + ||âm||2φ̃mi − 2(xmi − D̂m
′tmi )′âmf̃mi }

(9)
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Appendix D. Table (4) of section 5.

Variables Differences Variables Differences

gen1 0.80 gen15 0.45

gen2 0.28 gen16 0.82
gen3 0.62 gen17 0.54
gen4 0.52 gen18 0.25

gen5 1.04 gen19 0.52
gen6 0.32 gen20 0.35

gen7 0.80 gen21 1.01
gen8 0.20 gen22 0.49

gen9 0.92 gen23 0.31
gen10 0.40 gen24 0.69

gen11 0.67 gen25 1.46

gen12 1.24 gen26 1.52

gen13 0.53 gen27 0.93
gen14 0.48

Table 4: Application to the genus data with geologic covariate : Differences between maximal and
minimal values of geologic effects D[1, ], D[1, ]+D[2, ], D[1, ]+D[3, ], D[1, ]+D[4, ], D[1, ]+D[5, ]
(highlights on the greater differences, italics on the smaller).
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