Development of a methodology for analyzing nutritional data

Myriam Tami

20th march 2013

1/57

Myriam Tami Development of a methodology for analyzing nutritional dat

Context

Establishment of a target zone Target zone and results obtained Alternative : development of a new method Method principle Results Conclusion

- 2 Establishment of a target zone
- 3 Target zone and results obtained
- 4 Alternative : development of a new method
- 5 Method principle

A ►

Context

- Clinical study : collect food intake. (Nutritional data).
- 308 statistical units (observations) (i \in {1,...,308}) : first visit \rightarrow test/control.
- Nutritional recommendations (12 nutrients) : cholesterol, iron, calcium, protein, fat, carbohydrates, phosphorus, potassium, sodium...
- Goal : Establish a target zone based on nutritional recommendations (position).

2/57

Myriam Tami

Development of a methodology for analyzing nutritional dat

Target zone : based on nutritional Recommendations

- Nutritional recommendations : Examples :
 - \rightarrow Iron \rightsquigarrow [12mg, 28mg]
 - \rightarrow Percentage of daily energy intake

Lip	[30%, 40%]
GluT	[45%, 60%]

 \rightarrow gram body weight ProtT : [0.66 g/Kg, 2.2 g/Kg]

Target zone : Distances

- Distance for each nutrient $k \in \{1, ..., 12\}$:
 - \longrightarrow Measurement of the excess relative to the zone : $\bar{d_k}$.
 - \longrightarrow Measurement of deficiency to the zone : \underline{d}_k .

$$ar{d}_k(x,R_k)=0 \hspace{1cm} si \hspace{1cm} x\leq b_k \ = rac{|x-b_k|}{b_k} \hspace{1cm} si \hspace{1cm} x>b_k$$

$$\underline{d}_k(x, R_k) = rac{|x - a_k|}{a_k} \quad si \ x < a_k$$

$$= 0 \quad si \ x \ge a_k$$

Such that, $R_k = [a_k, b_k]$ the recommendation for each nutrient k. x the nutrient consumption by a statistical unit x and k.

Target zone : Distances

- A global distance :
 - \longrightarrow Measurement of the global excess to the target zone : $\overline{\delta}$.
 - \rightarrow Measurement of global deficiency to the target zone : δ .

$$\begin{split} \bar{\delta}(\underline{\mathbf{x}},\underline{\mathbf{R}}) &= [\sum_{k} (\bar{d}_{k}(\underline{\mathbf{x}},R_{k}))^{p}]^{1/p} \\ \underline{\delta}(\underline{\mathbf{x}},\underline{\mathbf{R}}) &= [\sum_{k} (\underline{\mathbf{d}}_{k}(\underline{\mathbf{x}},R_{k}))^{p}]^{1/p} \end{split}$$

$$\implies$$
 Matrix of distances 308*12
 \hookrightarrow new data : $\overline{\delta} - \underline{\delta}$

A B + A B +

Schema : global distance

Description zone

 \hookrightarrow No individuals do the following sets of recommendations for 12 nutrients.

 \implies Study of statistical units outside the target zone :

 \hookrightarrow CAH, K-"median", ACP.

A B > A B >

Target zone and results obtained

• The Target zone is empty.

 \implies No observation follows all (12) nutritional recommendations.

Study of observations which are outside the target zone.
 →Homogeneous : no particular group emerges.

 \implies The target zone is restrictive.

・ 同 ト ・ ヨ ト ・ ヨ ト

Alternative : development of a new method

- Idea : be able to TARGET a less restrictive zone.
- Make a "scanner" (in 12 dimensions) of the observations cloud.

Variation of the cloud's border and respect of the shape of the cloud :

What is the lpha parameter ?

- $\alpha \in [0,1].$
- α is a percentage.
- Definition :
 - $\forall \ i \in \{1,...,308\}$
 - x_i i-th observation of 308
 - $\longrightarrow \alpha = \text{order quantiles } q^i_{\alpha} \text{ such that } q^i_{\alpha} = ||x_i||.$
- To each observation x_i we denote α_i the value corresponding to α.

A B M A B M

What is the utility of lpha parameter ?

- Choose a border = choose a value α .
- Utility : isolate two groups : A group of observations x_i such that $0 \le \alpha_i \le \alpha$ The group of remaining observations x_i such that $\alpha < \alpha_i \le 1$

Example : $\alpha = 1$

- *α* = 1.
- The target zone contains all the individuals.

$$(\alpha = 1 \Leftrightarrow \alpha = 100 \%).$$

 \rightarrow No requirement about the consumption quality of individuals.

-∢ ≣ →

Example : $\alpha = 0$

- $\alpha = 0.$
- The target zone is empty.

 \rightarrow High exigency about the alimentary consumption with the individuals.

< A ▶

Conclusior

Method principle : step 1

From each observation x_i, we study the other observations positioning according to two points following : the target zone and x_i.

Method principle : step 2

• A curve (density) is obtained. \longrightarrow Illustration of the cloud observed from x_i 's position.

< ∃⇒

Conclusior

Method principle : step 3

 Evaluation of α_i values associated to each x_i, i ∈ {1,...,308}.

< ∃ →

Method principle : step 4

- We choose a value of α : the border.
- For example $\alpha = 95\%$.

• We compare the value α chosen and α_i , *i* fixed.

-

Conclusior

Method principle : step 5

• Decision :

 \longrightarrow If $\alpha_i > \alpha$ then x_i is outside of border chosen :

 x_i is outlier of the α zone chosen.

 \longrightarrow If $\alpha_i \leq \alpha$ then x_i is inside of the border α chosen, i.e : inside the α zone.

-

Especially for statisticians : the principle construction

Myriam Tami

Development of a methodology for analyzing nutritional da

< 🗇 >

Especially for statisticians : the principle construction

Especially for statisticians : the principle construction

- On each Δ_i , we partition the interval $[0, 1.5^* max_i(\xi_i^i)]$ so as to obtain 100 coordinates y_k^i , $k \in \{1, \dots, 100\}$.
- In each y_{k}^{i} , we estimate value of the density.
- Multivariate and non-parametric kernel density estimatior :

$$\bar{f}_{i}(y_{k}^{i}) = \frac{1}{308 * h_{1} * ... * h_{12}} \sum_{j=1}^{308} \prod_{d=1}^{12} \mathcal{K}(\frac{y_{k}^{i,d} - x_{j}^{d}}{h_{d}})$$

 $\longrightarrow d=12$, the dimension.

- $\rightarrow h_d$ diagonal elements of H (the bandwidth, smoothing).
- \longrightarrow K is the gaussian kernel.
- For each estimated density $\hat{\phi}_i = \hat{f}_i ||x_i||^{12-1}$, we estimate the quantile α % : q'_{α} .
- Comparaison of $||x_i||$ et q_{α}^i (α chosen). \implies Variation of α : "scanner" of the cloud.

Method's graphic results

DANONE RESEARCH

э

Study of the group "outlier" : CAH

• Dendogram obtained by aggregation method of Ward and the Euclidean metric.

Dendogramme d'une CAH avec∕la-méthode de Ward et la distance euclidienne

- X Agglomerative Coefficient = 0.92
- $\hookrightarrow k = 2 \text{ ou } 3 \text{ clusters.}$
- Quality of clustering : silhouette coefficient.

Study of the group "outlier" : "K-median"

- Identification of the number of cluster based on median (robust to outliers).
- Definition :

$$s(X_i) = \frac{b(X_i) - a(X_i)}{max\{a(X_i), b(X_i)\}}, \text{ for each } x_i.$$

- $a(X_i)$ is the average of dissimilarities between X_i and all other observations in the group to which is belong.
- $b(X_i)$ is the average of dissimilarities between x_i and the observations in the group closest to the group of x_i .

Context Establishment of a target zone Target zone and results obtained Alternative : development of a new method Method principle Results Conclusion Study of the group "outlier" : "K-median"

- For each group of a size k partition of all observations, there is a silhouette coefficient which is the average of $s(x_i)$'s group.
- The global silhouette coefficient s(x) (which is indicated in a graphic output) is the average of all silhouette coefficients of groups.

$$\hookrightarrow$$
 -1 \leq s(x) \leq 1

 \hookrightarrow s(x) is calculated for a number of clusters k > 1.

 \hookrightarrow s(x) measures the quality of the clustering (the lower s(x), the less well x is classified).

・ロト ・同ト ・ヨト ・ヨト

Study of the group "outlier" : "K-median"

Example k = 3: $s(X_i) \simeq 1 \Leftrightarrow X_i$ is in the right group.

 \hookrightarrow b(X_i) corresponds to the average of dissimilarities associated with group B since C is more distant. \hookrightarrow a(X_i) is the average of dissimilarities between X_i and \bigvee all other observations in group A.

Study of the group "outlier" : "K-median"

Example k = 3: $s(X_i) \simeq -1 \Leftrightarrow X_i$ is in the wrong group.

 \hookrightarrow b(X_i) corresponds to the average of dissimilarities associated with group B since C is more distant. \hookrightarrow a(X_i) is the average of dissimilarities between X_i and where the average of dissimilarities between X_i and where the second secon

Study of the group "outlier" : K-means ou "K-median" : result

- k = 2 clusters.
- The average silhouette is 0.19.
 - \longrightarrow Quality of clustering is low.

Study of the group "outlier" : K- median

• "K-median" \Rightarrow 2 clusters.

clusplot(pam(x = X, k = 2, diss = FALSE))

Component 1 These two components explain 53.17 % of the point variability.

• cloud "homogeneous" : No clear group structure.

э

Myriam Tami

Development of a methodology for analyzing nutritional da

- Measurement criterion : distance.
- No individuals in the target zone.
- Alternative approach : "scanner" of the cloud (variation of the cloud's border i.e : α).
- Groups of individuals (outliers compared to the cloud of points observed) are formed depending on the α value chosen.
 → A classical study of these groups "oulier" is possible (CAH, K-means/K-median, AFD...).
- No interest to cluster the data group "outlier" by classes.

・ 同 ト ・ ヨ ト ・ ヨ ト

THANK YOU

THANK YOU FOR YOUR ATTENTION

<ロ> <同> <同> < 同> < 同>

- [1] To Meet Nutrient Recommendations, Most French Adults Need to Expand Their Habitual Food Repertoire, , The Journal of Nutrition, 2009.
- [2] Development of the Healty Eating Index-2005, Journal of the AMERICAN DIETETIC ASSOCIATION, 2008.
- [3] Evaluation of the Healthy Eating Index-2005, Journal of the AMERICAN DIETETIC ASSOCIATION, 2008.
- [4] Silhouettes : a graphical aid to the interpretation and validation of cluster analysis, Elsevier Science Publishers B.V. (North-Holland), 1987.

< 日 > < 同 > < 三 > < 三 >

Bibliography

- [5] Clustering in an Object-Oriented Environment, Departement of Mathematics and Computer Science, U.I.A, Universiteitsplein 1, B-2610 Antwerp, Belgium.
- [6] Central region for multidimensionnal data : the spatial quantile approach, messieurs Gannoun et Bry, en préparation.
- [7] Le logiciel R : Maîtriser le langage, Effectuer des analyses statistiques, Rémy Drouilhet, Pierre Lafaye de Micheaux, Benoît Liquet, 2010.
- [8] Initiation à la statistique avec R, Frédéric Bertrand, Myriam Maumy-Bertrand, 2010.

< 日 > < 同 > < 三 > < 三 >

Bibliography

- [9] Classification et Prévision des Données Hétérogènes : Application aux Trajectoires et Séjours Hospitaliers, Thèse de Haytham ELGAZEL, Université Claude Bernard Lyon, 2007.
- [10] Économétrie non paramétrique, Stéphane Adjemian, Université d'Evry, 2004.
- [11] Convergence de l'estimateur multivarié à noyau de la régression, Karima Lagha et Smail Adjabi, Laboratoire LAMOS, Université de Béjaia, Algérie.
- [12] Study NU325, Data review meeting, Nutritional data, Report, version 1.4-30 March 2011

・ロト ・同ト ・ヨト ・ヨト

Recommendations

- EAR : "Estimated Average Requirement"*
- RDA : "Recommended dietary allowance"*

* According to : To Meet Nutrient Recommend tions, Most French Adults Need to Expand Their Habitual Food Repertoire.

< ∃ > < ∃ >

Recommendations

 $\ensuremath{\mathrm{TABLE}}$: Recommendations form of simple intervals

Recommendations

 $\ensuremath{\mathrm{TABLE}}$: Recommendations form of simple intervals

[EAR(P), Upperlim]	[RDA(P), Upperlim]	
[578mg,2500mg]	[750mg,2500mg]	
[EAR(K), Upperlim]	[RDA(K), Upperlim]	
[2387mg, ∞]	[3100mg, ∞]	
[EAR(Na), Upperlim]	[RDA(Na), Upperlim]	
[1500mg, 2365mg]	[1500mg, 2365mg]	
[EAR(Cu), Upperlim]	[RDA(Cu), Upperlim]	
[1,2mg,5mg]	[1,5mg, 5mg] 🛛 🛛	m e
[EAR(VitC), Upperlim]	[RDA(VitC), Upperlim]	
[85mg, 500mg]	[110mg. 500mg] 💷	く しょう
Myriam Ta	mi Development of a methodology for	analyzing nutritional da

Recemmandations

 TABLE : Recommendations If age \leq 55 years old

[EAR(Ca), Upperlim]	[RDA(Ca), Upperlim]
[693mg, 2500mg]	[900mg, 2500mg]
[EAR(Zn), Upperlim]	[RDA(Zn), Upperlim]
[7.7mg,25mg]	[10mg, 25mg]
[EAR(Se), Upperlim]	[RDA(Se), Upperlim]
[39µg,350µg]	[50µg,350µg]

イロト イポト イヨト イヨト

Recommendations

 $T_{\rm ABLE}$: Recommendations If age ≥ 55 years old

[EAR(Ca), Upperlim]	[RDA(Ca), Upperlim]
[924mg,2500mg]	[1200mg, 2500mg]
[EAR(Zn), Upperlim]	[RDA(Zn), Upperlim]
[8.5mg,25mg]	[11mg, 25mg]
[EAR(Se), Upperlim]	[RDA(Se), Upperlim]
[46.2µg,,350µg]	[60µg,,350µg]

イロト イポト イヨト イヨト

Recommendations

$\ensuremath{\mathrm{TABLE}}$: Recommendations for ProtT

[EAR(ProtT), Upperlim]	[RDA(ProtT), Upperlim]
[0.66 g/Kg, 2.2 g/Kg]	[0.83 g/Kg, 2.2 g/Kg]

イロト イポト イヨト イヨト

Recommendations

$\ensuremath{\mathrm{TABLE}}$: Recommendations as a percentage of daily energy intake

Lip	[30%, 40%]
GluT	[45%, 60%]

< 日 > < 同 > < 三 > < 三 >

Context Establishment of a target zone Target zone and results obtained Alternative : development of a new method Method principle Results Conclusion	
Calcium	

▲ 同 ▶ → ● 三

< ≣⇒

Establishment of a target zone Target zone and results obtained Method principle Results Conclusion Cholesterol

Recommandation 0.5 0.0 1.5 0.0 0.5 1.0 um₂ DANONE 53.89% d'individus dans la zone RESEARCH

Development of a methodology for analyzing nutritional da

Image: A image: A

< ∃→

5.03% d'individus dans la zone

Myriam Tami

< ∃⇒

(日)

DANONE

RESEARCH

Myriam Tami

Potassium

Development of a methodology for analyzing nutritional da

Myriam Tami

Magnesium

Context Establishment of a target zone Target zone and results obtained Alternative : development of a new method Method principle Results Conclusion	
Sodium	

Development of a methodology for analyzing nutritional da

Phosphorus

< 1 →

< ∃→

< ∃ > Development of a methodology for analyzing nutritional da

< 17 ▶

< ∃→

-0.4

-0.2

53/57

0.0

-1.0

-0.8

Myriam Tami

21.91% d'individus dans la zone

-0.6

3 Development of a methodology for analyzing nutritional da

um

< ∃⇒

DANONE

EARCH

0.0

< 1 →

Context Establishment of a target zone Target zone and results obtained Alternative : development of a new method Method principle Results Conclusion	
Kmeans	

Exemple simpliste de fonctionnement de k-means

Quelques points dans le plan, avec le « bon choix de K », choix initial des c.d.g. au hasard et la CV rapide donne « la bonne solution » !

Myriam Tami

Context Establishment of a target zone Target zone and results obtained Alternative : development of a new method Method principle Results Conclusion	
Conclusion	

Kmeans

Etape 0-1 : affectation des observations aux c.d.g.

Etape 0-2 : calcul des nouveaux c.d.g.

э

Context Establishment of a target zone	
larget zone and results obtained	
Alternative : development of a new method	
Method principle	
Results	
Conclusion	

Kmeans

Etape 1-2 : calcul des nouveaux c.d.g.

Context	
Establishment of a target zone	
Target zone and results obtained	
Alternative : development of a new method	
Method principle	
Results	
Conclusion	

Kmeans

Etape 2-2 : calcul des nouveaux c.d.g.

イロト イロト イモト イモト

E